Structure and Photoluminescence Properties of Sm3+ Ion-Doped YInGe2O7 Phosphor

نویسندگان

  • Hung-Rung Shih
  • Yee-Shin Chang
چکیده

A new phosphor, Sm3+ ion-doped YInGe₂O₇, was synthesized using a planetary ball mill solid state reaction. The XRD patterns show that all of the peaks can be attributed to the monoclinic YInGe₂O7 crystal structure when the Sm3+ ion concentration is increased up to 20 mol %. Under an excitation wavelength of 404 nm, the Sm3+ intra-4f transition appears in the emission spectrum including two stronger emission peaks located at 560-570 nm and 598 nm correspond to the 4G5/2 → ⁶H5/2 and ⁴G5/2 → ⁶H7/2 transitions, respectively, and another weak emission peak located at 645 nm is due to the ⁴G5/2 → ⁶H9/2 transition. The decay time decreases from 4.5 to 0.8 ms as Sm3+ ion concentrations increase from 1 to 20 mol %, and the decay mechanism of the ⁴G5/2 → ⁶H7/2 transition is a single decay component between Sm3+ ions only. The concentration quenching effect occurs when the Sm3+ ion concentration is higher than 3 mol %. The CIE color coordinate of Y0.97Sm0.03InGe₂O₇ phosphor is at x = 0.457 and y = 0.407, which is located in the orange-yellow light region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors

The novel phosphor of LaAlGe2O7 activated with the trivalent rare-earth Ln3+ (Ln = Eu, Sm, Dy) ions were synthesized by solid-state method, nd their characterization and luminescent properties were investigated. The absorption, emission and excitation spectra, and decay curves were mployed to study the luminescence properties. The calcined powders of the Eu3+, Sm3+ and Dy3+ ions doped in the La...

متن کامل

Synthesis of New RE3+ Doped Li1+xTa1−xTixO3 (RE: Eu, Sm, Er, Tm, and Dy) Phosphors with Various Emission Colors

New phosphors with various emission colors for RE3+ doped Li1+xTa1-xTixO₃ (LTT) (RE: Eu, Sm, Er, Tm, and Dy) were synthesized by electric furnace at 1423 K for 15 h. The microstructure of the host material and the photoluminescence (PL) property were determined and compared to those of RE3+ doped Li1+xNb1-xTixO₃ (LNT). In the LTT phosphor, the highest PL intensity was achieved for the mixture c...

متن کامل

Synthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors

Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...

متن کامل

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor

Novel LiLa1-x-y(MoO4)2:xSm3+,yEu3+ (in short: LL1-x-yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1-x(MoO4)2:xSm3+ (LL1-xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole-electric dipole mechanism. In the samples co-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017